

PROBONITE: PRivate One-Branch-Only Non Interactive decision Tree Evaluation

Sofiane Azogagh, Victor Delfour, Sébastien Gambs and Marc-Olivier Killijian - UQÀM

Summary

- Introduction
- State-of-the-art
- Preliminaries
 - Functional Bootstrapping
 - Private Information Retrieval
- Our proposal
- Conclusion and perspectives

Machine Learning as a Service (MLaaS)

Exists in many platforms

Uses private or personal information

During the training phase or at inference time

Introduction Motivation

Motivation

If the cloud is compromised, some private information of the client will leak

Motivation

If the cloud is compromised, some private information of the client will leak

If the client is malicious, he might recover information about the model

Motivation

Decision trees are:

Simpler to train

Interpretable

Used in post hoc explanation

Motivation

Decision trees are:

Simpler to train

Interpretable

Used in post hoc explanation

Motivation

Decision trees are:

Simpler to train

Interpretable

Used in post hoc explanation

Motivation

Decision trees are:

Simpler to train

Interpretable

Used in post hoc explanation

How to evaluate a decision tree on private data?

How to evaluate a decision tree on private data?

Client

The naïve way

Preserves privacy of the client's data ☑
Preserves privacy of the server's model ✗
Needs one round of communication ☑

How to evaluate a decision tree on private data?

Preserves privacy of the client's data
Preserves privacy of the server's model
Needs one round of communication

How to evaluate a decision tree on private data?

Preserves privacy of the client's data
Preserves privacy of the server's model
Needs one round of communication

How to evaluate a decision tree on private data?

The client's features are encrypted

Server has to consider all the nodes ($\mathcal{O}(2^d)$)

Private comparison is the most expensive operation and there is one per node

State-of-the-art

Non-interactive		
One branch		
Techniques used		

	[WFNL16]		
Non-interactive	×		
One branch	×		
Techniques used	OT + Add. HE		

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016

	[WFNL16]	[TKK19]	
Non-interactive	×	×	
One branch	×		
Techniques used	OT + Add. HE	OT + ORAM	

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016 [TKK19]: Anselme Tueno et al. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019

	[WFNL16]	[TKK19]	[TBK20]	
Non-interactive	×	×		
One branch	×		×	
Techniques used	OT + Add. HE	OT + ORAM	FHE	

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016

[TKK19]: Anselme Tueno et al. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019

[TBK20] : Anselme Tueno et al. Non-interactive Private Decision Tree Evaluation. IFIP 2020

	[WFNL16]	[TKK19]	[TBK20]	[ALRRSV22]
Non-interactive	×	×		
One branch	X		X	X
Techniques used	OT + Add. HE	OT + ORAM	FHE	FHE

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016

[TKK19]: Anselme Tueno et al. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019

[TBK20] : Anselme Tueno et al. Non-interactive Private Decision Tree Evaluation. IFIP 2020

[ALRRSV22]: Adi Akavia et al. Privacy-Preserving Decision Trees Training and Prediction. ACM Trans. Priv. Secur. 2022

	[WFNL16]	[TKK19]	[TBK20]	[ALRRSV22]
Non-interactive	×	×		
One branch	×		×	×
Techniques used	OT + Add. HE	OT + ORAM	FHE	FHE

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016

[TKK19]: Anselme Tueno et al. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019

[TBK20] : Anselme Tueno et al. Non-interactive Private Decision Tree Evaluation. IFIP 2020

[ALRRSV22]: Adi Akavia et al. Privacy-Preserving Decision Trees Training and Prediction. ACM Trans. Priv. Secur. 2022

	[WFNL16]	[TKK19]	[TBK20]	[ALRRSV22]
Non-interactive	×	×		
One branch	X		X	X
Techniques used	OT + Add. HE	OT + ORAM	FHE	FHE

[WFNL16]: David J. Wu et al. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016

[TKK19]: Anselme Tueno et al. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019

[TBK20] : Anselme Tueno et al. Non-interactive Private Decision Tree Evaluation. IFIP 2020

[ALRRSV22]: Adi Akavia et al. Privacy-Preserving Decision Trees Training and Prediction. ACM Trans. Priv. Secur. 2022

Preliminaries

Preliminaries Functional Bootstrapping

Traditional bootstrapping allows to refresh the noise of a ciphertext

Preliminaries

Functional Bootstrapping

Traditional bootstrapping allows to refresh the noise of a ciphertext

Functional bootstrapping exploit the traditional one to compute arbitrary function

Preliminaries

Private Information Retrieval

A PIR can be done by an absorption between the encrypted request and the database

Homomorphic absorption:

$$B_i = B_i$$
PIR request

Database

Challenge: reducing the number of comparisons

Challenge: reducing the number of comparisons

To address this challenge, the server has to accomplish two tasks:

Challenge: reducing the number of comparisons

To address this challenge, the server has to accomplish two tasks:

1. Blindly select the node to evaluate

Challenge: reducing the number of comparisons

To address this challenge, the server has to accomplish two tasks:

- 1. Blindly select the node to evaluate
- 2. Blindly select the attribute without getting any knowledge

Our proposal Impact on data structure

Impact on data structure

1. We complete the decision tree by adding some dummy nodes if necessary

Impact on data structure

1. We complete the decision tree by adding some dummy nodes if necessary

2. We consider the tree as a database composed by d sub-databases called $^{\prime\prime}$ levels $^{\prime\prime}$

Our proposal

New primitive: Blind Node Selection

Each level, except the root, is associated to a new encrypted bit b_i

This bit is used to build an accumulator bit associated to each node

Only one of this accumulator bit is set

Finally, we get the correct node a-la-PIR

Our proposal

New primitive: Blind Array Access

The idea: use the feature vector as a LUT in the functional bootstrapping

The message to be bootstrapped is the index encrypted

Improvement: use the binary decomposition of the index as a bootstrapping key

Conclusions and Perspectives

PROBONITE:

- A simple yet effective protocol for decision tree evaluation
- Based on homomorphic encryption and non-interactive
- Reduces the number of comparisons to its bare minimum
- Two new primitives: Blind Array Access and Blind Node Selection

Conclusions and Perspectives

Perspectives:

- Implementation with a FHE library
- Packing techniques
- Use efficient private comparison to improve the protocol

Thanks!

Any Questions?

azogagh.sofiane@courrier.uqam.ca