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Machine Learning as a Service (MLaaS)

Exists in many platforms

Uses private or personal information

During the training phase or at inference time
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on Machine Learning

Google Cloud Platform

If the cloud is compromised, some
private information of the client will
leak
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Motivation

If the cloud is compromised, some
private information of the client will

leak

If the client is malicious, he might
recover information about the model
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Server

P N

Preserves privacy of the client’s data
Preserves privacy of the server’s model X
Needs one round of communication
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Needs one round of communication X
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How to evaluate a decision tree on private data ?

The HE way

- .
M
5

Preserves privacy of the client’s data
Preserves privacy of the server’s model
Needs one round of communication
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Introduction

How to evaluate a decision tree on private data ?

7l -

The client’s features are encrypted

Server has to consider all the nodes

(OQ2%)

Private comparison is the most
expensive operation and there Is one

per node
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Comparisons of approaches

Computation

Non-interactive Complexity

One branch

Techniques used Communication complexity
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Functional Bootstrapping

Traditional bootstrapping allows
to refresh the noise of a
ciphertext

Traditional

Bootstrapping
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Preliminaries

Functional Bootstrapping

JC.)
Traditional bootstrapping allows

to refresh the noise of a

ciphertext
Functional

Bootstrapping

Functional bootstrapping exploit
the traditional one to compute
arbitrary function
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Preliminaries

Private Information Retrieval

Database

A PIR can be done by an

absorption between the encrypted
request and the database

Homomorphic absorption :

i (h
0) )
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To address this challenge, the server
has to accomplish two tasks :
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Our proposal

Challenge : reducing the number of comparisons

To address this challenge, the server
has to accomplish two tasks :
1. Blindly select the node to (Fi<(9} ‘ F>0)
evaluate ‘
F, <2 ) @G

F, > 2

© @aa @

21



Our proposal

Challenge : reducing the number of comparisons

To address this challenge, the server
has to accomplish two tasks :

1. Blindly select the node to LSEY @ [10}>[94

evaluate ‘
F, <2 ’ >

2. Blindly select the attribute without Fr>2

getting any knowledge @ @ FA<(5} @
©
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Our proposal

Impact on data structure

1. We complete the decision tree
by adding some dummy nodes if
necessary
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Our proposal

Impact on data structure

1. We complete the decision tree by e
adding some dummy nodes If
necessary

2. We consider the tree as a database

composed by d sub-databases called
« levels »
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Our proposal

New primitive : Blind Node Selection

Each level, except the root, Is
associated to a new encrypted bit

This bit I1s used to build an
accumulator bit associated to each
node

Only one of this accumulator bit is set

Finally, we get the correct node a-la-PIR
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Our proposal

New primitive : Blind Array Access

The idea : use the feature
vector as a LUT In the
functional bootstrapping

The message to be _> -+ (JOOO

bootstrapped Is the index l
encrypted

Improvement : use the binary decomposition
of the index as a bootstrapping key
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J
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Client’s Features Server’s Decision Tree
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= BlindArrayAccess( | i’ |)
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—- = BlindNodeSelection( ,Bj,Bj+1)

27



Our proposal

Toy example

1 Sport activity per |
week }

( Fruits and veg per
| day ‘

1i
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Conclusions and Perspectives

PROBONITE :

* A simple yet effective protocol for decision tree evaluation
 Based on homomorphic encryption and non-interactive
 Reduces the number of comparisons to its bare minimum

* Two new primitives : Blind Array Access and Blind Node Selection
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Conclusions and Perspectives

Perspectives :

* |mplementation with a FHE library

* Packing techniques

* Use efficient private comparison to improve the protocol
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Thanks ! &

Any Questions ?

azogagh.sofiane@courrier.ugam.ca
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