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Abstract—While the use of homomorphic encryption (HE) for
encrypted inference has received considerable attention, its
application for the training of machine learning (ML) models
remains comparatively underexplored, primarily due to the
high computational overhead traditionally associated with fully
homomorphic encryption (FHE). In this work, we address
this challenge by leveraging the inherent connection between
inference and training in the context of Extremely Randomized
Trees (ERT), thereby enabling efficient training directly over
encrypted data. More precisely, we instantiate this approach
by the training of ERT within the TFHE framework. Our
implementation demonstrates that it is possible to train ERTs
on encrypted datasets with a runtime significantly lower than
current state-of-the-art methods for training Random Forests
in the encrypted domain while achieving comparable predictive
accuracy. This result highlights a promising direction for
practical privacy-preserving machine learning using FHE. Our
second main contribution consists in leveraging the properties
of ERTs to create the first ML model that enables private
unlearning. This approach makes the unlearning process in-
distinguishable from training, thus allowing clients to conceal
the true nature of the operations being conducted on the model.

Index Terms—Privacy-preserving Machine Learning, Random
Forests, Extremely Randomized Trees, Homomorphic Encryp-
tion, TFHE, Private Unlearning, Oblivious queries.

1. Introduction

Decision trees are known for their interpretability and
applicability across a wide range of domains—from fi-
nance [1] and healthcare [2] to cybersecurity and industrial
automation [3]. In particular, by decomposing complex de-
cisions into hierarchical sequences of simple rules, decision
trees are inherently interpretable, making them highly suit-
able for settings in which explainability is essential. Over
time, their performance has been significantly enhanced
through ensemble learning techniques, such as bagging and
boosting. In this landscape, Extremely Randomized Trees
(ERTs) [4], a stochastic variant of the classic Random
Forests algorithm, have emerged as a powerful model. By
introducing additional randomness in the split selection pro-
cess, ERTs promote higher variance across individual trees,
which in turn can improve generalization and robustness.

As machine learning systems increasingly process sen-
sitive data, ensuring the privacy of training and inference

has become a central concern [5]. Fully Homomorphic
Encryption (FHE) schemes offer a cryptographic solution
to this challenge, enabling computation directly over en-
crypted data without ever decrypting it. While substantial
advancements in applying FHE to inference tasks have been
made recently, allowing encrypted predictions using pre-
trained models, the training of machine learning models over
encrypted data remains an underexplored frontier [6]. This
is due to the prohibitive computational overhead associated
with FHE operations, despite the progress made in schemes
like TFHE [7], which support efficient programmable boot-
strapping and bit-level logic gates.

In this work, we bridge this gap by presenting a novel
protocol to train ERTS on encrypted datasets by leverag-
ing the capabilities of TFHE. Additionally, our protocol is
oblivious, in the sense that both the tree structure and model
outputs reveal no information about the underlying training
data. To realize this, we tackle several challenges, including
the encrypted computation of histograms, randomized split
point selection and secure tree construction—entirely in
the encrypted domain. Our construction is also designed to
support machine unlearning, allowing the efficient removal
of the impact of individual data points from the encrypted
model. To the best of our knowledge, this work is the first
realization of oblivious unlearning within a homomorphic
encryption framework, making it a significant milestone
towards adaptive privacy-preserving machine learning.

2. Related Work

Privacy-preserving decision tree evaluation has been an
active research area for a decade, with most approaches
leveraging advanced cryptographic primitives such as Secure
Multiparty Computation (SMPC) [8], [9] and Homomorphic
Encryption (HE) [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26] for model
training and/or inference over encrypted or secret-shared
data. Among HE-based protocols, schemes like BFV [27],
CKKS [28] and TFHE [7] are particularly prominent due to
their rich arithmetic capabilities and expressiveness.

Private decision tree inference. The most advanced
solutions for inference over encrypted data typically exploit
the batching features of HE schemes. For instance, Cong
and collaborators [23] proposed a highly efficient protocol
using batching-friendly cryptosystems. Their scheme lever-
ages parallelism for significant throughput gains in inference
while reducing comparison time by up to 72× compared



Fig. 1. Chronology of related work on tree-based model
training and inference using HE.

to prior state-of-the-art approaches such as [21]. Within
the TFHE ecosystem, Probonite [19] introduced the first
protocol performing a number of non-interactive compar-
isons linear in the tree depth, substantially accelerating eval-
uation. SortingHat [20] further improved performance by
integrating a new comparison technique and a transciphering
layer that minimizes ciphertext size. More recently, Frery
and co-authors [22] made substantial use of programmable
bootstrapping to implement efficient tree traversal and com-
parisons, pushing the limits of bit-level encrypted inference.

Private decision tree training. Unlike inference, pri-
vate training of decision trees has been less studied (see
Figure 1) due to the challenge of selecting the best splits
without leaking data. Akavia and collaborators [18] pro-
posed one of the few interactive training schemes based
on TFHE, using polynomial approximations for encrypted
comparisons and achieving communication complexity lin-
ear in the tree depth. While efficient, their method requires
interaction and incurs costly comparison evaluations. Our
approach departs from this paradigm by employing a novel
data encoding technique (detailed in Section 5.1), which
eliminates the need for explicit comparisons, enabling a fully
non-interactive and client-offline training procedure.

Recently, Shin and co-authors [29] proposed a random
forest training scheme based on CKKS, which employs ap-
proximate sign functions for comparisons while leveraging
SIMD parallelism. While CKKS-based batching is power-
ful, our lightweight construction and optimized TFHE-level
comparison make our approach competitive, even without
batching, especially in the context of ERTs in which sim-
plicity and randomness reduce training complexity.

Private decision tree unlearning. Driven by privacy
regulations such as the GDPR’s and the “right to be for-
gotten” [30], the area of machine unlearning has gained
traction [31], [32], [33]. While some efforts have examined
unlearning on ERTs in the clear domain [34], our work is the
first to introduce private unlearning for ERTs specifically in
the context where both the training data and the unlearned
instances remain encrypted throughout the process. More
broadly, our proposal constitutes the first private unlearning
protocol for an ML model under homomorphic encryp-
tion, setting a precedent for regulatory-compliant, encrypted

model adaptability.

3. System and Adversary Models
We consider the traditional outsourcing setting in which

a client holds private data and delegates machine learning
tasks to a cloud server. Specifically, the client may request
training, unlearning or inference operations on an ERT
model hosted by the server. Our model also extends to a fed-
erated setting involving multiple clients, each holding their
own private dataset. These clients collaboratively contribute
to a shared classifier maintained by the server, enabling
joint training, unlearning and inference—while preserving
the privacy of individual datasets.

We consider a semi-honest server that follows the proto-
col but attempts to extract as much information as possible
from client interactions. Specifically, when handling train-
ing, unlearning or inference requests, the server tries to infer
sensitive information about the provided input features. In
addition to data confidentiality, we also aim at protecting
the type of query submitted by the client (e.g., training vs.
unlearning), which can also be privacy-sensitive. Since a
bigger training data set is typically associated with better
model utility, a malicious server may have incentives to
ignore, reject or even simply defer unlearning requests in
order to retain all samples in the model—thus violating the
client’s right to be forgotten.

To capture this risk, we introduce a stronger adver-
sary model, in which in addition to inferring the client’s
data, the adversary also aims to distinguish the nature of
each query. Our protocol is therefore designed to ensure
both data privacy and query indistinguishability, preventing
the server from identifying whether a given request corre-
sponds to training, unlearning or inference. This extended
adversary model shares a strong similarity with assump-
tions commonly made in the context of Oblivious RAM
(ORAM) [35]. In ORAM, protocols are often designed not
only to hide the memory access patterns, but also to make
the type of access (e.g., read vs. write) indistinguishable
to a semi-honest server [36]. Analogously, in our setting,
our objective is to conceal whether a client is performing
a read operation on the ERT forest (i.e., inference) or a
write/update operation (i.e., training or unlearning). This
query indistinguishability is thus essential to prevent the
server from inferring intent or denying unlearning requests.

4. Background
Let p be a power of 2. We denote by Zp the message

space, and by JmK the TFHE encryption of a message m ∈
Zp. Additional notations are defined as they appear in the
text. In this section, we introduce the necessary background
on the TFHE cryptosystem, decision trees as well as ERTs
to understand our approach.

4.1. The TFHE Cryptosystem

The TFHE encryption scheme, introduced in 2016 [37],
[38], is built upon the hardness of the Learning With Er-



rors (LWE) problem and its ring-based variant, Ring-LWE
(RLWE).

4.1.1. Ciphertext Types.. The TFHE cryptosystem defines
several types of ciphertexts, depending on the plaintext
format and the encryption method used. Below, we outline
the different ciphertext types and the associated notations
used throughout this paper.

LWE Ciphertexts. A message m ∈ Zp can be
encrypted as an LWE ciphertext (⃗a, b), in which b =∑n−1

i=0 ai · si + ∆m + e. Here, a⃗ = (a0, . . . , an−1) ∈ Zn
2

is a randomly sampled vector, s⃗ = (s0, . . . , sn−1) ∈ Zn
2 is

the secret key, ∆ is the message scaling factor, and e is a
noise term drawn from a Gaussian distribution with standard
deviation σLWE.

RLWE Ciphertexts. A tuple of messages
(m0, . . . ,mN−1) ∈ ZN

p can be represented
as a polynomial M(X) and encrypted as an
RLWE ciphertext (A(X), B(X)), in which
B(X) = A(X) · S(X) + ∆M(X) + E(X). Here,
A(X) is a polynomial with randomly sampled coefficients,
S(X) is the secret key polynomial and E(X) is an error
polynomial whose coefficients are drawn from a Gaussian
distribution with standard deviation σRLWE.

LUT Ciphertexts. An additional ciphertext type,
known as a Look-Up Table (LUT) ciphertext, was later
introduced in the literature. LUT ciphertexts are a specific
form of RLWE ciphertexts with structured redundancy: each
coefficient of the message polynomial M(X) is repeated N

p
times, allowing the encryption of up to p messages within
a single ciphertext.

In this paper, we use bracket notation to distin-
guish between ciphertext types. For example, JMKLUT =
Jm0, . . . ,mp−1KLUT denotes a LUT encryption of message
vector M = (m0, . . . ,mp−1); JmKLWE denotes a standard
LWE ciphertext of scalar message m and [m]LWE indicates a
trivially encrypted LWE ciphertext (i.e., one with zero noise
and zero mask).

4.1.2. TFHE’s operations. The TFHE cryptosystem offers
several essential primitives for performing homomorphic op-
erations on ciphertexts. The main operations used through-
out this paper are described below:
• Blind Rotation (BR): (J⋆KLWE, J⋆KLUT) → J⋆KRLWE.

This operation, central to programmable bootstrapping,
enables the homomorphic rotation of a polynomial M(X),
encrypted as an RLWE ciphertext, by an amount specified
in an LWE ciphertext JiKLWE, without revealing this
rotation index.

• Sample Extraction (SE): (⋆, J⋆KRLWE)→ J⋆KLWE.
This operation extracts a coefficient from the polynomial
M(X) =

∑N−1
i=0 miX

i encrypted as an RLWE cipher-
text, to produce an LWE ciphertext JmjKLWE. It operates
by isolating and re-encoding one coefficient while dis-
carding the rest.

• Key Switching (KS): J⋆KLWE → J⋆KLWE.
This operation transforms an LWE ciphertext encrypted
under one secret key into a ciphertext under a different

secret key, allowing ciphertext reuse across different con-
texts or components of the system.

• Pub. Functional Key Switch (PFKS): {J⋆KLWE} →
J⋆KRLWE.
Introduced in [39] (Algorithm 2), this operation allows for
the compact representation of multiple LWE ciphertexts
into a single RLWE ciphertext, effectively packing several
LWE ciphertexts into one.

In our implementation, each Blind Rotation is preceded
by a Key Switching operation, while Sample Extraction is
omitted due to its negligible execution time and lack of
noise accumulation. Among all TFHE primitives, the most
computationally significant are the Blind Rotation (BR) and
the Public Functional Key Switch (PFKS). As such, we
quantify the cost of our protocol primarily in terms of these
two operations. Specifically, we denote tBR as the combined
execution time of a Blind Rotation and its associated Key
Switch, and tPFKS as the time required to apply PFKS
to a single LWE ciphertext. Sample Extraction is excluded
from our analysis for its minimal impact on performance
and noise budget.

4.2. RevoLUT operations

RevoLUT [40] is a library built on top of tfhe-rs [41]
that handles LUT ciphertexts as first-class objects and pro-
vides a set of operations specifically designed for their
manipulation. Below, we briefly review a subset of these
operations that are relevant to this work.

4.2.1. Byte LWE ciphertexts. One of the key challenges
in using TFHE lies in the scalability of its cryptographic
parameter sizes. While commodity hardware typically pro-
cesses data in byte-sized units (i.e., p = 256), using such
a high message modulus directly with tfhe-rs’s native
encryption would result in impractically large ciphertexts
and keys. A practical workaround is to decompose large
messages into smaller digits modulo p. In this work, we
adopt a radix-2 representation of LWE ciphertexts. Specif-
ically, by setting p = 24, each ciphertext encodes a 4-bit
value or nibble. Consequently, a full byte can be encrypted
using a pair of LWE ciphertexts. For instance, this repre-
sentation has been previously leveraged in the design of an
8-bit general-purpose TFHE processor [42].

Definition 1 (Byte-LWE ciphertexts). A message m ∈ Z28 ,
decomposed as m = 24 ·m1 +m0 with m0,m1 ∈ Z24 , is
encrypted as:

JmKBLWE = (Jm1KLWE, Jm0KLWE)

This encoding naturally leads to the definition of new
LUT structures in the RevoLUT library. In this paper,
we focus on a specific LUT variant—LUT1,2—introduced
in [40], which we refer to as the Nibble-Byte-LUT.

Definition 2 (Nibble-Byte-LUT ciphertexts). A vector M =
(mi)

p−1
i=0 of p bytes can be encrypted into a LUT1,2 cipher-

text as follows :

JMKLUT1,2 = (JMhKLUT, JMlKLUT)



in which Mh (respectively Ml) is the vector composed of
the higher (respectively lower) 4-bits of each mi ∈M .

We refer to this structure as a Nibble-Byte-LUT since it
allows LUTs to be indexed by a single LWE nibble while
the corresponding outputs are full BLWE ciphertexts. In
the next section, we present the key operations from the
RevoLUT library leveraging this representation.

4.2.2. Oblivious operations. The RevoLUT library offers
a suite of oblivious read and write primitives. In partic-
ular, it enables the oblivious selection of the JiKLWE-th
element from a set of LWE ciphertexts without revealing
the access index. When the set contains at most p LWE
ciphertexts, they can be compactly represented as a single
LUT ciphertext via the PFKS operation. The BlindRead
procedure is then implemented using a combination of
BlindRotation followed by SampleExtraction as
detailed in Algorithm 8.

The same approach extends naturally to operations on
Nibble-Byte-LUT ciphertexts, such as oblivious reads and
writes. For example, the BlindRead operation can be
applied separately to both components of a LUT1,2 cipher-
text—once for the high nibble and once for the low nibble.
To simplify notation, we will refer to these generalized oper-
ations as if they were applied to standard LUT ciphertexts.
However, it is important to note that the number of required
Blind Rotation operations (tBR) depends on the structure of
the LUT: :

tBlindRead =

{
tBR if applied to JMKLUT

2tBR if applied to JMKLUT1,2

An Argmax operator is also required in our protocol.
We have implemented it in the RevoLUT library using
a fold-based approach, which allows the computation of
both the maximum value and its corresponding index over
a vector of BLWE ciphertexts. In this paper, we focus
on the specific case in which the input vector contains at
most p BLWE ciphertexts, which is described in Algo-
rithm 9. Its computational complexity, expressed in terms
of BlindRotation and Public Functional Key
Switch operations, is given by:

tBlindArgmax = (12tBR + 4tPFKS)× (p− 1).

Another essential operation provided by RevoLUT is
an oblivious counting mechanism developed in [43], which
computes the number of encrypted elements in a vector
of BLWE or LWE ciphertexts. We refer to this procedure
as BlindCount. The time complexity of this operation, in
terms of BlindRotation and Public Functional
Key Switch operations, is given by:

tBlindCount = (5tBR + 2tPFKS)×m,

in which m denotes the number of elements in the input
vector.

4.3. Decision Trees and Random Forests

Decision trees [44], [45] are a widely used machine
learning algorithm that recursively partitions the feature
space to produce a prediction. Each internal node N of a
decision tree T is associated with a specific feature, and in
case of numerical features, a threshold θ that is used to guide
the decision at that node. Starting from the root node, the
tree is traversed by evaluating the conditions at each node,
branching accordingly, until a terminal node—referred to as
a leaf —is reached, which determines the final prediction.
Due to their intuitive structure and interpretability, decision
trees have been successfully applied to a wide range of tasks,
including classification and regression. Their simplicity also
makes them computationally efficient and well-suited for
scenarios requiring explainable model behavior. Their per-
formance can be significantly enhanced by combining mul-
tiple decision trees into an ensemble such as a random
forest [46]. This approach aggregates the outputs of multiple
trees, typically by majority voting or averaging, leading to
improved accuracy and robustness.

Training. The training of a decision tree is an it-
erative procedure that aims to partition the dataset into
increasingly homogeneous subsets with respect to the target
variable. At each step in the tree-building process, the
current dataset is split into two or more subsets according to
a selected feature and, if applicable, a threshold value (i.e.,
for continuous features). The optimal split is determined by
a scoring criterion that seeks to maximize the homogeneity
(or minimize the impurity) of the resulting subsets. Common
impurity measures include the Gini Index [47] and Informa-
tion Gain [48]. The process proceeds recursively by creating
a new node for each subset and continuing the splitting until
a stopping condition is met. Typically, training halts when all
samples in a node belong to the same class, though practical
implementations often use additional stopping criteria, such
as limiting the tree depth or requiring a minimum number of
samples per node. Each leaf node maintains class counters,
which record the distribution of training samples that reach
that leaf. These counters are then used during inference to
determine the predicted class label, as well as possibly the
confidence level.

Inference. The inference in a decision tree consists
in applying the trained model to predict outcomes for pre-
viously unseen input data. This process is deterministic and
mirrors the tree’s structure: starting from the root node, the
input feature values are evaluated against the node’s thresh-
old (for numerical features) or category (for categorical fea-
tures). Based on the result of this comparison, the traversal
proceeds to the left or right child node, and this process is
repeated recursively until a leaf node is reached. In the case
of a single decision tree, the predicted class corresponds
to the majority class of the training samples stored in that
leaf. For an ensemble of trees, such as in a random forest
or ERTs, the final prediction is typically determined by
aggregating the outputs of individual trees—most commonly
via majority voting in classification tasks or averaging in
regression.



Unlearning. Driven by privacy regulations and the
increasing demand for user control over personal data, sig-
nificant research efforts have focused on developing effec-
tive machine unlearning methods [49]. More precisely, the
goal of unlearning is to remove the influence of a specific
data sample from a trained model, effectively “forgetting”
that the sample was ever part of the training set. A naive
approach to unlearning would be to retrain the model from
scratch on the original dataset minus the target sample. How-
ever, this makes the computational cost of unlearning nearly
equivalent to full retraining, which is often prohibitive.
Consequently, unlearning techniques aim at being more
computationally efficient compared to retraining. One of the
most well-known approaches is SISA (Sharded, Isolated,
Sliced, and Aggregated training) [32], a framework that
supports unlearning for arbitrary model ensembles. In SISA,
the training data is partitioned into independent slices and
models are trained in isolation on these slices. To unlearn
a sample, only the relevant model trained on the affected
slice needs to be retrained. While this reduces the cost
compared to retraining the entire ensemble, it still requires
some retraining, albeit on a smaller portion of the data.

4.4. Extremely Randomized Trees

Introduced by Geurts, Ernst and Wehenkel in 2006 [4],
ERTs offer an efficient and highly randomized variant of
tree-based ensemble learning. The key idea behind ERTs
is to inject randomness at two levels of the tree-building
process: both the choice of features and the associated
thresholds are randomized. Specifically, for each node, a
subset of k′ features is randomly selected from the total set
of k features. The best feature is then chosen among this
subset based on a scoring criterion. When k′ = 1, the result-
ing tree is entirely random, with both the selected features
and thresholds completely decoupled from the training data.

ERT training involves constructing a predefined number
of trees, each of a fixed depth d. For each tree, the internal
nodes are randomly assigned features and thresholds before
any data is processed. The training data is then passed
through the trees, updating class counters in the correspond-
ing leaves. During inference, the model aggregates predic-
tions from all trees—typically using majority voting—to
obtain the final output.

Despite their simplicity and lack of fine-tuned splits,
ERTs have demonstrated strong empirical performance
across a range of tasks. For example, they have been used to
achieve up to 99.27% accuracy in breast cancer prediction
by integrating feature ranking with ERTs [50], and have
outperformed other learning algorithms such as neural net-
works, random forests and support vector machines in fault
detection for wireless sensor networks [51]. An additional
advantage of ERTs, particularly relevant in privacy-sensitive
applications, is their natural support for machine unlearning.
Indeed, unlike standard decision trees—in which removing
a training sample might change the optimal split at each
node—ERTs construct their structure independently of the
data. Thus, instead of retraining or modifying the tree

structure, one can simply reprocess the target sample to
locate the corresponding leaf and decrement the associated
class counter, which makes ERTs especially well-suited
for cryptographic protocols that require both learning and
unlearning over encrypted data.

5. Our Proposal

In this section, we present the main contribution of this
work: a novel protocol for training, untraining and inference
of ERTs, along with its practical implementation under
the TFHE cryptosystem. First, we describe the client-side
pre-processing that facilitates several key operations in our
protocol, before detailing the full construction.

5.1. Client Processing

Client-side preprocessing plays a crucial role in both the
efficiency and accuracy of our protocol. In this section, we
describe the operations performed by the client, including
TFHE parameter selection, data encoding and quantization,
along with the rationale behind these design choices.

TFHE parameters choice. As discussed earlier,
TFHE natively supports encrypted messages with precision
limited to log2(p) bits. While the tfhe-rs library [41]
can support values up to p = 28 by adjusting parameters
without compromising security, increasing p significantly
degrades performance. Beyond p = 26, key sizes become
prohibitively large and operation runtimes slow down con-
siderably. We selected p = 24 as a balanced choice, for
the following reasons: first, it enables modeling trees as a
hierarchy of LUTs, which is central to our efficient traversal
protocol described in the next section. Second, it supports
the use of Byte-LWE ciphertexts, allowing efficient manipu-
lation of encrypted bytes via two 4-bit ciphertexts. Third, in
tfhe-rs, the BlindRotation operation—heavily used
in our protocol—is most optimized for p = 24 ; and finally,
the resulting key size remains manageable (approximately
65 MB), making the protocol more practical for deployment.
The parameter set used in our implementation is summarized
in Table 1.

Table 1: The parameters used in our experiments giving 4bits
of precision and ensuring 128-bit of security. The TFHE
parameters notations used are the ones in TFHE’s original
paper [39].

Parameter Value
LWE dimension 761
RLWE polynomial degree (N ) 2048
LWE standard deviation (σLWE) 2−40

RLWE standard deviation (σRLWE) 2−2

Decomp params bootstrapping (g, ℓ) (223, 1)
Decomp params KS (g, ℓ) (23, 5)
Decomp params PFKS (g, ℓ) (223, 1)
Ciphertext modulus (q) 264

Plaintext modulus (p) 24



Data encoding. A key factor contributing to the
protocol’s efficiency lies in how the client encodes its input
features. Let s = ([f0, . . . , fk−1], l) denote a data sample,
in which fi is the i-th feature and l the class label. Each
feature fi is represented as a unary vector Fi of size N
defined as:

Fi,j =

{
0 if j ∈ [0, fi − 1]

1 if j ∈ [fi, N − 1].

For instance, with N = 4 and fi = 3, this yields
Fi = [0, 0, 0, 1]. Each vector Fi is then encrypted as an
RLWE ciphertext, producing an encrypted feature vector
F = (JF0KRLWE, . . . , JFk−1KRLWE). This encoding, in-
spired by [22], allows the server to evaluate comparisons
without explicitly performing them. If a decision node spec-
ifies feature index I and threshold θ, the server retrieves
JFIKRLWE and performs a Sample Extraction at index θ to
obtain Jθ < fIKLWE. Since Sample Extraction is one of the
fastest operations in TFHE, this method greatly accelerates
comparison logic. Repeating this process across all nodes
yields a "comparison tree" or compiled tree, described in
the next section. For the label l ∈ Zγ , we use a one-
hot encoding l = (l0, . . . , lγ−1). The label vector is then
adapted according to the query type—training, unlearning
or inference—as follows:

li =


1, if Training and li ̸= 0

2, if Unlearning and li ̸= 0

0, if Inference and li ̸= 0

(1)

Although −1 could have represented unlearning, we use 2
for efficiency in the BAAT operation (see Algorithm 11)
used for leaf updates. Finally, each li is encrypted as an
LWE ciphertext, yielding the encrypted label vector L =
(Jl0KLWE, . . . , Jlγ−1KLWE). In summary, the client encrypts
a sample as S = (F,L).

Quantization. The quantization process is a crucial
step in our protocol, as it allows us to represent continuous
feature values with a limited number of bits. To quantize
the dataset, we first normalize each feature value to [0, 1],
based on the minimum and maximum values of the feature,
before scaling this normalized value to the range of integers
that can be represented with the specified number of bits.
The result is then rounded to the nearest integer. Since the
feature values are encoded in a unary vector, the precision
of the data is now limited to log2(N) bits. In particular,
the classical TFHE parameters with p = 24 that provides
128-bit of security in tfhe-rs sets N to 211. Therefore,
we can quantize the feature values to 11 bits. This process
ensures that the quantized values are uniformly distributed
across the available range, preserving the relative differences
between feature values while reducing the data size. This is
particularly important for our protocol, as the client may
encode just one or few samples (e.g, for inference).

5.2. Building Blocks

This section introduces the main components upon
which our protocol is built.

5.2.1. Trees Structure. We adopt a specialized represen-
tation of decision trees tailored to the requirements of our
protocol. As introduced earlier in the context of client-side
encoding, one such representation is the compiled tree. In
addition, we define two other variants: the training tree
and the inference tree. All tree variants share a common
structure, which can be expressed as:

T =
{
Ni

}2d+1−1

i=0
∪
{
Li

}2d−1

i=0

in which Ni denotes a decision node and Li a leaf node.
The main difference between each tree type is the internal
representation of these nodes and their associated logic. To
provide an intuitive understanding, we illustrate the three
tree types in Figure 2, and proceed to formally define them
in the following subsections.

Fig. 2. Illustration of the training tree, inference tree and
compiled tree.

Definition 3 (Training tree). In a training tree T tr, each
decision node Ni is stored in the clear and contains a pair
(θi, Ii), in which θi is a threshold and Ii is the index of the
feature. Each leaf Li holds γ BLWE ciphertexts, in which
the j-th ciphertext encrypts the count of training samples
that reached the leaf and belong to class j. Formally, we
have:

Ni = (θi, Ii) and Li = (Jc0KBLWE, . . . , Jcγ−1KBLWE),

in which JcjKBLWE represents the encrypted count of class-j
samples at leaf Li.

This representation enables the leaf nodes to store class
counts up to a maximum value of 256, due to the byte-
size encryption. If more than 256 samples from the same
class reach a leaf, the counter wraps around modulo 256.
The implications of this constraint on model accuracy are
discussed in Section 6.2.

After the training phase, a new structure called the
inference tree is derived from the training tree, by computing
the majority class in each leaf Li of the training tree, which
then serves as the prediction for that leaf. The majority vote
is carried out using the TreeMajority algorithm, presented
in Algorithm 1.

Definition 4 (Inference tree). In an inference tree T inf ,
the decision nodes Ni are identical to those in the training
tree. However, each leaf Li now contains a single LWE



ciphertext that encrypts the majority class label. Formally,
we have:

Ni = (θi, Ii) and Li = JcKLWE

, in which c is the class with the highest count in the corre-
sponding leaf of the training tree, serving as the prediction
for that leaf.

Once the inference trees are constructed, the server uses
them to process incoming inference queries. The predictions
from each tree are then aggregated using a majority vote to
produce the final output. This voting procedure is carried
out by the Majority algorithm, detailed in Algorithm 3.

Algorithm 1: Majority vote in a leaf
(TreeMajority)

Input : A training tree T tr with 2d leaves
Li = (Jc0KBLWE, . . . , Jcγ−1KBLWE) in
which d is the depth of the tree and γ is
the number of classes.

Output: An inference tree T inf with 2d leaves
Li = JcKLWE in which c is the majority
class.

// Get the majority class for each leaf

1 for i ∈ [0, 2d − 1] do
2 JcKLWE ← BlindArgmax(Li)
3 T inf .Li ← JcKLWE

4 end
5 return T inf

The TreeMajority algorithm operates by invoking the
BlindArgmax procedure from RevoLUT on each leaf of
the training tree T tr. Its overall time complexity is therefore
given by:

tTreeMajority = 2d × tBlindArgmax

= 12× 2d × tBR + 4× 2d × tPFKS

in which d is the depth of the training tree T tr.

Definition 5 (Compiled tree). A compiled tree T comp is
an encrypted structure used to traverse the decision tree
obliviously. Each decision node Ni contains a single en-
crypted comparison bit JbiKLWE computed via the Compile
procedure (see Algorithm 2). The leaves Li are left empty,
as the sole purpose of the compiled tree is to determine the
encrypted index of the reached leaf. Formally, we define:

Ni = (JbiKLWE) and Li = ∅

in which JbiKLWE denotes the encrypted result of the com-
parison at node i.

Since the Compile operation relies solely on the
SampleExtraction primitive—which is fast and incurs no
additional noise—its time complexity tCompile is negligible
compared to other operations used in our protocol.

Algorithm 2: Compilation process (Compile)
Input : A balanced decision tree

T =
{
Level0, . . . , Leveld−1

}
in which

Leveli is the i-th level of the tree. The
i-th level is composed of 2i nodes (θ, I)
in which θ is the threshold and I is the
index of the feature.

Output: A compiled tree T comp.
1 T comp ← ∅
2 for i ∈ [0, d− 1] do

// Compile the i-th level

3 Levelc ← ∅
4 for (θ, I) ∈ Leveli do
5 b← SampleExtraction(θ, JFIKRLWE)
6 Levelc ← Levelc ∪ b
7 end
8 T comp ← T comp ∪ Levelc
9 end

10 return T comp

Algorithm 3: Majority vote of a set of LWE
ciphertexts (Majority)

Input : A set of m LWE ciphertexts
C =

{
Jc0KLWE, . . . , Jcm−1KLWE

}
representing the classification of a sample
by m inference trees.

Output: A majority class c
// Get the count of each class

1 R← BlindCount(C)
// Get the majority class

2 c← BlindArgmax(R)
3 return c

The Majority algorithm, which consists essentially
of two RevoLUT operations—BlindCount followed by
BlindArgmax—has a total time complexity given by:

tMajority = tBlindCount + tBlindArgmax

= (5m+ 12(p− 1))× tBR

+ (2m+ 4(p− 1))× tPFKS

where m is the number of inference trees and p = 16.

5.2.2. Shallow Tree Traversal. Once the compiled tree is
constructed, we traverse it level by level using successive
BlindRead operations on LUT ciphertexts that represent
each level. We restrict ourselves to perfectly balanced trees
of depth d ≤ log2(p), so that the i-th level Nj

2i−1
j=0 can be

packed into a single LUT ciphertext. During traversal, an
encrypted selector si is computed iteratively to track the
path through the tree. This selector is an LWE ciphertext
defined by the recurrence:

si =

{
Jb0KLWE if i = 0

JbiKLWE + 2si−1 if i ≥ 1



Here, JbiKLWE is the encrypted comparison bit obtained via
BlindRead on the i-th level. Recall that in a compiled tree
T comp, the j-th node contains JbjKLWE = Jθ < fIKLWE,
the result of comparing the encrypted feature to the thresh-
old. At the end of the process, sd is an LWE ciphertext
encrypting the index ℓ of the reached leaf.

This traversal method is detailed in Algorithm 4, and
it can be generalized to any balanced tree of depth d ≤
log2(p), even when comparisons are computed homomor-
phically instead of using precompiled values.

Algorithm 4: Traversal process (Traverse)
Input : A compiled tree

T comp =
{
Level0, . . . , Leveld−1

}
in

which Leveli is the i-th level of the tree
containing 2i LWE ciphertexts JbiKLWE

representing the comparison bits.
Output: The selector s of the reached leaf.
// Initialize the selector to the first

level

1 s← Level0.b0
// Traverse the tree

2 for i ∈ [1, d− 1] do
3 JLeveliKLUT ← PFKS(Leveli)
4 b← BlindRead(JLeveliKLUT, s)
5 s← b+ 2s
6 end
7 return s

Since traversal uses one BlindRead per level and one
PFKS per node (except at the root), the total complexity is:

tTraverse = d× tBlindRead +
( d−1∑

i=1

2i
)
× tPFKS

= d× tBR + 2d × tPFKS

in which d is the depth of the compiled tree T comp.

5.2.3. Updating The Leaves. During training (respectively
unlearning), the leaf nodes of a tree T are updated by
incrementing (respectively decrementing) the class counts
they contain. More precisely, at a given iteration, a leaf Li

holds encrypted class counters Jc0KBLWE, . . . , Jcγ−1KBLWE,
in which each JcjKBLWE encodes the number of samples of
class j that have reached that leaf. Given a sample (F,L)
and its associated encrypted label vector L, the update rule
is:

JcjKBLWE =


JcjKBLWE + 1 if Training and Lj ̸= 0

JcjKBLWE − 1 if Unlearning and Lj ̸= 0

JcjKBLWE if Inference

To preserve the obliviousness of the protocol, this update
must not reveal the label nor the nature of the query (training
vs. unlearning). This is handled by the Update procedure,
which uses the BAAT primitive (Blind Add Ternary) from
RevoLUT [40], detailed in Algorithm 11. The objective

BAAT is to add an encrypted ternary value (i.e, 0 , 1 or −1)
to a Nibble-Byte-LUT at an encrypted index ℓ computed via
the Traverse algorithm.

Algorithm 5: Updating the leaves (Update)

Input : A training tree T with 2d leaves
Li = (Jc0KBLWE, . . . , Jcγ−1KBLWE) in
which d is the depth of the tree. A
selector JℓKLWE encrypted as a LWE
ciphertext denoting the index of the leaf
reached. A label L encrypted as a vector
of LWE ciphertexts.

Output: The updated training tree T .
// Pack each class counts into a Nibble-Byte

LUT

1 for j ∈ [0, γ − 1] do
2 v ← ∅
3 for i ∈ [0, 2d − 1] do
4 v ← v ∪ JcjKBLWE

5 end
6 JCjKLUT1,2

← PFKS(v)
7 end
// Update the leaves

8 for j ∈ [0, γ − 1] do
9 JCjKLUT1,2

← BAAT(JCjKLUT1,2
, JℓKLWE, Lj)

10 end
11 return T

In our implementation, the packing step is omitted
by storing the class counters as prepacked Nibble-Byte-
LUT ciphertexts. While the previous notation Li =
(Jc0KBLWE, . . . , Jcγ−1KBLWE) is kept for clarity, the ac-
tual data structure is γ precomputed Nibble-Byte-LUTs.
As a result, the time complexity of the Update opera-
tion—excluding the packing step—is:

tUpdate = γ × tBAAT

= 15γ × tBR + 11γ × tPFKS ,

in which γ denotes the number of classes.

5.3. Partially Oblivious Protocol

In this section, we detail the core components of our
protocol, including the procedures for training, unlearning
and inference. We also analyze the extent to which each
operation preserves obliviousness and discuss the trade-offs
between efficiency and privacy in our design.

5.3.1. Training And Unlearning Processes. The training
and unlearning processes are described in Algorithm 6.
They take as input a dataset D and either generates a
new forest F composed of ERTs or operates on a pre-
existing forest—typically the case during unlearning. For
each sample (F,L) ∈ D, each tree T ∈ F is first compiled
using the Compile function, which computes the encrypted
comparison bits. Then, the Traverse function is used to



derive the encrypted index ℓ of the reached leaf. Finally,
the Update procedure adjusts the class counters in the leaf
accordingly, depending on the nature of the query (i.e.,
training or unlearning).

After all samples have been processed, the leaves of
each tree in the forest undergo a majority vote using the
TreeMajority algorithm to prepare the trees for inference.
This overall process is illustrated in Figure 3.

Fig. 3. Overview of the Training Process at the beginning
of the training, in which leaves are set to {J0KBLWE}γ−1

j=0
for γ = 2. The feature vector used for updating the leaves
is f =

[
5, 3, 7, 1, 0

]
and the label is l = 0 encoded and

encrypted as explained in Section 5.1.

Algorithm 6: Training/Unlearning process

Input : A dataset D =
[(
F i, Li

)]n
i=1

in which
F i = (JF i

0KRLWE, . . . , JF i
k−1KRLWE) is the

the encrypted features of the i-th sample
and Li is its one-hot encoded label
encrypted as a vector of LWE ciphertexts.

Output: A forest F = (T0, . . . , Tm−1)
// Generate random trees

1 for i ∈ [0,m− 1] do
2 Ti ← RandomTree()
3 end
// Train/Unlearn the trees

4 for (F,L) ∈ D do
5 for T ∈ F do
6 C ← Compile(T , F )
7 ℓ← Traverse(C)
8 T ← Update(T .leaves, L, ℓ)
9 end

10 end
// Compute the forest ready for inference

11 for T ∈ F do
12 T ← TreeMajority(T )
13 end
14 return F

Remark that, due to the randomized nature of ERTs,
some leaves may remain unvisited during training. In such

cases, the TreeMajority function performs an argmax over
all-zero counts, defaulting to the last class, which can lead
to erroneous predictions. To mitigate this, we append an
additional encrypted zero-counter as an abstention class
before executing TreeMajority. This ensures that if a leaf
is unvisited, the model abstains from making a prediction
rather than guessing arbitrarily.

The total cost of the training or unlearning phase, ex-
pressed in terms of cryptographic operations, is given by:

ttr = n·m·(tCompile+tTraverse+tUpdate)+m·tTreeMajority,
(2)

in which n is the number of data samples and m is the
number of trees in the forest.

5.3.2. Inference. Once the forest F has been prepared for
inference, the prediction process becomes relatively straight-
forward. For each tree T ∈ F , the client sample F is
first compiled using the Compile function. The compiled
tree is then traversed via the Traverse function, yielding an
encrypted index ℓ corresponding to the reached leaf. The
prediction associated with this leaf is then retrieved using
the BlindRead function. After collecting predictions from
all trees in the forest, a final majority vote is performed using
the Majority function to determine the predicted class. The
detailed procedure is provided in Algorithm 7.

To provide a complete view, the total computational cost
of the inference procedure is expressed as:

tinf = n ·m ·(tCompile+tTraverse+tBlindRead)+n ·tMajority

(3)

Algorithm 7: Inference process
Input : A feature vector

F = (JF0KRLWE, . . . , JFk−1KRLWE).
A vector of encyption of 0 serving as

label L = (J0KLWE)
γ−1
i=0 .

A forest F = (T0, . . . , Tm−1) with
majority vote in the leaves.
Output: A classification c
// Get the classification of each tree

1 R← ∅
2 for (F,L) ∈ D do
3 for T ∈ F do
4 C ← Compile(T , F )
5 ℓ← Traverse(C)
6 JrKLWE ← BlindRead(T .leaves, ℓ)
7 R← R ∪ JrKLWE

8 end
9 end
// Get the majority vote

10 c← Majority(R)
11 return c

5.3.3. Discussion. The oblivious nature of the protocol
stems from the shared use of the Compile and Traverse
functions across all query types—training, unlearning and



inference. The only divergence occurs after the traversal,
in which the Update function is invoked for training and
unlearning to modify the leaves while BlindRead is used
during inference to retrieve a prediction. This architectural
separation necessitates distinct tree representations for train-
ing/unlearning and for inference. As such, we refer to this
construction as a Partially Oblivious Protocol. It guarantees
that training and unlearning queries are indistinguishable
from each other, preserving the client’s right to be forgotten.
However, inference queries can still be differentiated by
the server. Consequently, there is no need for the client
to include a label L when requesting inference, as shown
in Algorithm 7 and supported by the encoding logic in
Equation 1. In the following section, we demonstrate how
this protocol can be extended to achieve full query-type
obliviousness through a few additional operations.

5.4. Fully Oblivious Protocol

To make the client’s queries—whether for training,
unlearning, or inference—indistinguishable to the server,
we explore three progressively more efficient strategies to
achieve full query-type obliviousness.

First and foremost, the client encodes the labels ac-
cording to Equation 1. The first and most straightforward
method consists in having the server execute both the train-
ing/unlearning and inference processes for each incoming
sample. This guarantees perfect query indistinguishability
but comes at the cost of significant overhead with a total
runtime that becomes:

ttr + tinf + (n− 1) ·m · tTreeMajority

To reduce this overhead, we consider a second approach:
augmenting Algorithm 6 with inference computations. For
every sample, the server computes the inference trees by
applying TreeMajority to each tree in F , followed by a
BlindRead to retrieve the prediction. If the query corre-
sponds to inference, the tree structure remains unchanged
since the label vector L consists of J0KLWE. The final
prediction is computed via a majority vote (Majority).
Although this method better aligns with the ERT design, it
still incurs considerable cost due to repeated and sometimes
unnecessary TreeMajority and Majority operations. Its
total runtime is:

ttr+n·m·tBlindRead+n·tMajority+(n−1)·m·tTreeMajority

A more efficient alternative leverages batch processing.
Here, the forest F comprises both training trees T tr and
inference trees T inf , the latter being derived from the
former via periodic application of TreeMajority. Every β
queries, the inference trees are updated. During the interval,
all samples—regardless of query type—are processed using
the current inference trees and updates are performed only
on training trees. This way, inference queries do not alter
the model (as their labels are zero vectors), but predictions
are still correctly computed. Training and unlearning queries
continue to update the training trees. The detailed process

is given in Algorithm 12 in Appendix 5.4 and its resulting
runtime is:

ttr + n ·m · tBlindRead + n · tMajority +
n

β
·m · tTreeMajority

Hence, the server benefits from this third method when β >
n−1, as it significantly amortizes the cost of TreeMajority
over multiple samples.

6. Experimental Evaluation

In this section, we describe the experiments conducted
to validate our approach. All experiments were conducted
on a machine running Ubuntu 24.04, equipped with an
Intel i9-11900KF CPU at 3.5 GHz and 64 GB of RAM.
We evaluated our protocol on three standard datasets from
the UCI Machine Learning Repository: Iris [52], Wine [53]
and Breast Cancer [54]. The main characteristics of these
datasets are summarized in Table 2.

Dataset (D) # samples (n) # features (k) # classes (γ)
Train Test

Iris 120 30 4 3
Wine 142 36 13 3
Breast Cancer 455 114 30 2

Table 2: Datasets used in the experiments.

These three datasets are particularly relevant as they each
exhibit distinct characteristics that impact different aspects
of the protocol, such as runtime, accuracy and bandwidth.
For example, while both the Iris and Wine datasets contain
a small number of samples, they feature a relatively high
number of classes. In contrast, the Breast Cancer dataset
has a larger sample size but fewer classes. Additionally,
the Wine dataset differs from the Iris dataset by having
a greater number of features. These variations provide a
diverse testbed, allowing us to assess the performance of
our protocol under different conditions.

6.1. Time complexity

The use of ERTs significantly accelerates the training
process, as the construction of the internal nodes Ni is in-
stantaneous—contrary to classical decision trees, which re-
quire data-dependent computations. The total training times
for Algorithm 6, applied to the three datasets summarized
in Table 2, are reported in Figure 5. As illustrated, training
time is not solely dictated by the number of samples but
also by the number of output classes. For a fixed number
of trees, the number of samples directly scales the cost
of the Compile, Traverse and Update operations, while
the number of classes primarily impacts the complexity
of TreeMajority, Update and Majority (see Table 5 in
Appendix C). For instance, given an equal number of
samples, training on the Breast Cancer dataset—which has
fewer classes—is expected to be approximately 1.5× less
expensive than on the Iris or Wine datasets. Nevertheless, the
results in Figure 5 show that the Cancer dataset incurs the



highest training cost. This is explained by its significantly
larger sample size—roughly three times that of the Iris and
Wine datasets—making sample count the dominant factor
in total training time for this particular case.

Fig. 4. A comparison of training times and accuracy between
our private ERT forest and the private Random Forest model
from [29], evaluated across different tree depths. For a
fair comparison, we took the same amount of samples for
both models, which correspond to those reported in Table 3
of [29]. Both models have a forest size of 64.

Regarding the comparison with the privacy-preserving
Random Forest model based on the CKKS scheme, as
proposed by [29], the runtime figures reported in their paper
(shown in Figure 4) indicate that our protocol achieves a
speedup of approximately 1.2× to 2.4× for tree depths
starting from 3, despite a marginal trade-off in accuracy. It is
important to emphasize that, unlike [29], our reported train-
ing time explicitly includes the cost of the TreeMajority
operation, which is used to finalize predictions by computing
the majority vote in the leaves. This further underscores the
practical efficiency of our approach, particularly in scenarios
where low latency is critical.

Fig. 5. Training time and accuracies across various forest
sizes F (i.e, 8, 16, 32 and 64) and the different datasets used.
The results presented were obtained with the training set
sizes listed in Table 2

6.2. Accuracy analysis

The accuracy of ERTs is inherently variable due to
the randomized nature of feature and threshold selection.
This work does not aim to improve ERT accuracy but
instead to analyze how applying ERTs to encrypted data
affects predictive performance. To do so, we first identified
the optimal splits (θ, I) on unencrypted data by averaging
results over 100 trials. We then retrained the model using the

same data but encrypted. Our results show that the accuracy
of encrypted models depends not only on the dataset but
also on the forest size and the encryption constraints. As
depicted in Figure 5, the Iris dataset yielded the highest
accuracy, which is expected due to its small size (few
samples and features), which facilitates generalization and
prevents overfitting. In several runs, the encrypted model
achieved perfect accuracy (100%). The Wine dataset, despite
having more features, performed similarly, demonstrating
the protocol’s resilience to increased input dimensionality.
For these two datasets, the number of training samples per
class was small enough to avoid exceeding the capacity of
a BLWE ciphertext (limited to a maximum count of 256).
As a result, the encrypted and unencrypted models exhibited
comparable accuracy.

In contrast, the Cancer dataset includes more samples
than can be stored in an encrypted leaf counter, which
is limited to 256 by the BLWE ciphertext capacity. This
leads to a mismatch between the encrypted and unencrypted
model accuracies when more than 256 samples of the same
class reach the same leaf. A straightforward way to address
this issue is to increase the radix representation of the
counters by using more LWE components in each BLWE
ciphertext, thereby extending the counting range. However,
this comes at the cost of reduced performance. Interestingly,
this overflow effect can sometimes improve accuracy. As
shown in Figure 6a, the encrypted model’s accuracy on the
Cancer dataset initially aligns with the clear-text version and
even improves slightly after overflows begin. This behavior
stems from a form of implicit pruning: when excessive sam-
ples from the majority class (typically c0) flood a poorly split
leaf (often the rightmost one), the counter wraps around,
possibly flipping the predicted class to c1. Such "corrupted"
trees—whose splits are too coarse to be useful—are effec-
tively neutralized or reversed in their decision. In binary
classification tasks, this can increase the diversity of the
ensemble and correct for biased trees, improving the overall
majority vote. However, this advantage is fragile. If more
than half of the trees in the forest are corrupted due to
overflow, the ensemble’s decision may become unreliable,
and accuracy drops below the baseline of the clear-text
model. As shown in Figure 6a, this threshold is critical for
forests of limited size (e.g., 8 trees). Hence, increasing the
forest size can help mitigate the risks of overflow by diluting
the influence of any single corrupted tree and maintaining
better ensemble stability.

We hypothesize that if the dataset exhibits high class
overlap —meaning that samples from different classes
are not well-separated in feature space— this overflow
phenomenon tends to be less frequent. For example, the
Japanese Credit Screening dataset [55], despite containing
more samples than the Cancer dataset, shows fewer over-
flows. This is likely due to the lower separability of its
classes, as evidenced by the Principal Component Analysis
(PCA) plots in Figure 7b, in which class boundaries are
less distinct. Consequently, the FHE accuracy closely mir-
rors the clear-text accuracy across various forest sizes (see
Figure 6b).



(a) Cancer dataset

(b) Japanese Credit Screening dataset

Fig. 6. Accuracy of various forests during the training phase
on the Cancer and Japanese Credit Screening datasets [55].
The arrows (→) indicate the count of “corrupted” trees
in which leaf overflow occurred, meaning more than 256
samples of the same class reached a leaf.

6.3. Bandwidth analysis

Our protocol involves two distinct phases from a band-
width perspective:

• Offline Phase: The client generates and transmits the
necessary cryptographic material to the server. This
includes three types of keys: the bootstrapping key
(BSK); the key switching key (KSK) and the public
functional key switching key (PFKSK).

• Online Phase: After the keys are established, the client
submits encrypted data to the server using ciphertexts
under its secret key. Each query consists of a mix of
RLWE and LWE ciphertexts.

The sizes of the ciphertexts and cryptographic keys used
in our protocol are detailed in Table 3 and the bandwidth
consumption for each dataset is summarized in Table 4.

LWE RLWE BSK KSK PFKSK
5.9 KB 32 KB 47.6 MB 7.5 MB 8 MB

Table 3: Size of the ciphertexts and the keys used in our
protocol.

Phase Dataset Bandwidth consumption

Online Phase
Iris 145.7 KB

Wine 433.7 KB
Cancer 971.8 KB

Offline Phase 63.1 MB

Table 4: Bandwidth consumption during the online phase
for one sample of each dataset. The offline phase bandwidth
consumption is not depending on the datasets

As expected, the Cancer dataset yields the largest band-
width per sample due to its higher feature dimensionality,
despite having fewer classes. Indeed, the two primary factors
that influence the size of a sample are the number of
features and the number of classes. To address this overhead,
we leverage a well-established compression technique [56]
for RLWE and LWE ciphertexts. These ciphertexts typ-
ically consist of two components: (⃗a, b) for LWE, and
(A(X), B(X)) for RLWE. By assuming a shared crypto-
graphically secure pseudo-random generator (PRG) between
client and server, we can transmit only the seed used to
generate the random part (i.e., a⃗ or A(X)). The server
then reconstructs the full ciphertext using the PRG and the
received seed plus b or B(X). Applying this compression
reduces the size of a single Cancer dataset sample from
971.8 KB to approximately 480 KB—nearly a 2x reduction.

7. Conclusion

In this paper, we presented an innovative method for
training and unlearning tree-based models on encrypted data.
Specifically, we employed the Extremely Randomized Trees
(ERTs) framework, whose structure naturally aligns the
training process of a sample with its inference process. This
structural property allowed us to bridge the gap between
private inference, a widely studied topic in Fully Homo-
morphic Encryption (FHE), and the previously unexplored
challenge of private training and unlearning.

A major contribution of our work is the first protocol
enabling privacy-preserving unlearning in machine learning.
Thanks to the random and independent nature of ERT splits,
data points can be efficiently removed from the model with-
out retraining it from scratch—opening the door to practical
and compliant data removal under encryption.

Our protocol provides two levels of privacy: a partially
oblivious version, in which the server cannot distinguish
training from unlearning, and a fully oblivious version, in
which inference queries are also hidden. This indistinguisha-
bility is especially valuable in settings in which clients wish
to conceal the nature of their interaction with the model.
Experimentally, our approach shows that accuracy remains
comparable to cleartext models in most settings, particularly
when encrypted class counts remain within representable
bounds. We also observe that the overflow of encrypted
counters can paradoxically improve accuracy by pruning
corrupted trees, a phenomenon we explain and quantify.

In terms of efficiency, our method outperforms existing
FHE-based Random Forest approaches in training time by
a factor of up to 2.4×, while maintaining competitive accu-
racy. Future work will aim to improve scalability to larger
models, enhance the management of counter overflows and
explore the homomorphic elimination of corrupted trees,
enabling encrypted forests to self-correct without leaking
information or requiring decryption.
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Appendix

1. RevoLUT operations

1.1. Blind Read. Introduced as Blind Array Access in [19],
the operation of reading an encrypted value in an encrypted
array at an encrypted index was further denoted as Blind
Read in RevoLUT paper [40] because of its extension to
multidimensional arrays.

Algorithm 8: Blind Read operation (BlindRead)

Input : A LUT ciphertext JMKLUT and a LWE
ciphertext JiKLWE.

Output: The JiKLWE-th element of JMKLUT :
JmiKLWE.

1 JMKLUT ← BlindRotation(JiKLWE, JMKLUT)
2 r ← SampleExtraction(0, JMKLUT)
3 return r

1.2. Blind Argmax. The proposed algorithm to compute
the maximum value of a vector of BLWE ciphertexts is a
single-pass scan with max/argmax update.

Algorithm 9: Blind Argmax of a vector of BLWE
ciphertexts

Input : A vector of BLWE ciphertexts
M = (Jm0KBLWE, . . . , Jmp−1KBLWE)

Output: A LWE ciphertext encrypting the index of
the maximum value of M .

// Initialize the maximum value and its

index

1 max← Jm0KBLWE

2 argmax← [0]LWE

// Single-pass scan with max/argmax update

3 for i ∈ [1, p− 1] do
4 e← JmiKBLWE

5 b← Jmax > eKLWE

6 A← PFKS([i]LWE, argmax)
7 argmax← BlindRead(A, b)

// Update the higher and lower parts of

the max value

8 H ← PFKS(eh,maxh)
9 L← PFKS(el,maxl)

10 max← BlindRead(JH,LKLUT1,2
, b)

11 end
12 return (argmax)

1.3. BLWE ternary addition. Adding a ternary value to a
BLWE ciphertext is not as straightforward as performing a
simple addition on each LWE ciphertexts composing the
BLWE ciphertext. This is because it involves managing
carry boundaries. For instance, incrementing an encryption
of the hex value (1F )16 should result with a carry bit
of 1 because (1F )16 + (1)16 = (20)16 and not (10)16.

This carry bit have to remain encrypted and be used to
update the next BLWE ciphertext only in the boundary
cases like (1F )16, (10)16 and (FF )16. In this paper, we
need to blindly add a ternary value to an element in a
Nibble-Byte-LUT (JAKLUT1,2) at an encrypted index. Due
to this reason, we developed the BAAT function, which is
presented in Algorithm 11. To better understand the BAAT
function, we first present an oblivious functional switch-case
that we developed in RevoLUT for this paper. In a nutshell,
given an encrypted selector ℓ and encrypted data JxKLWE,
the protocol evaluates exactly one among multiple candidate
functions homomorphically, while keeping both the selected
branch and the data secret. This function is presented in
Algorithm 10 with 3 cases but can be extended to p cases.

Algorithm 10: Oblivious functional switch-case 3
(OSW)

Input : A selector ℓ encrypted as an LWE
ciphertext. An encrypted data JxKLWE. A
list of candidate functions (f0, f1, f2)
encrypted as LUT ciphertexts.

Output: The result of the selected function fℓ
applied to JxKLWE

1 R← ∅
2 for i ∈ [0, 2] do
3 R← R ∪ BlindRead(JfiKLUT, JxKLWE)
4 end
5 JRKLUT ← PFKS(R)
6 r ← BlindRead(JRKLUT, ℓ)
7 return r

Before defining the BAAT function, we need to define
the function fId as the identity function, f+1 as the function
that adds 1 to the input modulo p and f−1 as the function
that subtracts 1 from the input modulo p.

2. Fully Oblivious Protocol

We detail our Fully Oblivious Protocol in Algorithm 12
as presented in Section 5.4.

3. Operations average time

We show in Table 5 the average time in seconds for the
main operations in our protocol for the three datasets used
in the experiments. This shows the impact of the dataset
characteristics (number of features, number of classes, etc.)
on the protocol runtime.

4. PCA of the datasets

The Figure 7 present the PCA of the Cancer and Credit
datasets. The high separability of the classes in the Cancer
dataset compared to the Credit dataset is clearly visible and
can explain the overflow phenomenon observed in Figure 6.



Algorithm 11: Blind Array Add Ternary (BAAT)
Input : A Nibble-Byte-LUT JAKLUT1,2

. A
encrypted index ℓ and a ternary value
JbKLWE where b ∈ {0, 1, 2}

Output: The Nibble-Byte-LUT JAKLUT1,2
with the

ternary value JbKLWE added at the ℓ-th
position

// Get the element to change in the LUT

1 JxKBLWE ← BlindRead(JAKLUT, ℓ)
// 1st round of switch-case

2 rl ←
OSW(ℓ, JxlKLWE, (JfIdKLUT, Jf+1KLUT, Jf−1KLUT))

// 2nd round of switch-case

3 t←
OSW(ℓ, JxlKLWE, (J0KLUT, J[0, . . . , 1]KLUT, J[2, . . . , 0]KLUT))

// 3rd round of switch-case

4 rh ←
OSW(t, JxhKLWE, (JfIdKLUT, Jf+1KLUT, Jf−1KLUT))

// Update the LUT

5 JAKLUT1,2
←

BlindWrite(JAKLUT1,2
, JℓKLWE, (rh, rl))

6 return JAKLUT1,2

(a) Cancer dataset

(b) Japanese Credit Screening dataset

Fig. 7. Principal Component Analysis (PCA) in 2D of the
Cancer and Credit datasets.

Algorithm 12: Fully Oblivious Protocol

Input : One or more samples D =
[(
F i, Li

)]n
i=1

in which
F i = (JF i

0KRLWE, . . . , JF i
k−1KRLWE) is the

the encrypted features of the i-th sample
and Li is the label encoded and encrypted
according to Equation 1.
A forest with two types of trees

F = (T tr
0 , . . . , T tr

m−1) ∪ (T inf
0 , . . . , T inf

m−1) and a
current state j ∈ [0, β − 1] before the next update
of (T inf

i )m−1
i=0 .

Output: One or more classifications
C = (JcKLWE)

n
i=1

1 C ← ∅
2 i← j
3 for (F,L) ∈ D do

// Update the model if the batch is

complete

4 if i == β then
5 for (T inf , T tr) ∈ F do
6 T tr ← TreeMajority(T inf )
7 end
8 i← 0
9 end

// Get the prediction with T inf and

update the count of T tr

10 for (T tr, T inf ) ∈ F do
11 C ← Compile(T tr, F )
12 ℓ← Traverse(C)
13 T tr ← Update(T tr.leaves, ℓ)
14 JrKLWE ← BlindRead(T inf .leaves, ℓ)
15 R← R ∪ JrKLWE

16 end
17 JcKLWE ← Majority(R)
18 C ← C ∪ JcKLWE

19 i← i+ 1
20 end
21 return C



Dataset m Compile Traverse Update TreeMajority BlindRead BlindCount BlindArgmax Majority

Iris
8 0.000032 0.089215 0.807610 15.102815 0.073092 0.581338 0.687836 1.269222
16 0.000032 0.092778 0.829066 15.056918 0.068593 1.156436 0.655479 1.811960
32 0.000037 0.090193 0.822244 15.068344 0.069083 2.385299 0.658220 3.043561

Wine
8 0.000041 0.089131 0.820877 15.043914 0.068837 0.566600 0.657254 1.223895
16 0.000040 0.089463 0.820111 15.054799 0.069017 1.176779 0.657477 1.834303
32 0.000040 0.089278 0.821859 15.042277 0.068908 2.357210 0.660547 3.017799

Cancer
8 0.000042 0.089257 0.540498 9.762715 0.068869 0.565306 0.326632 0.891981
16 0.000044 0.089342 0.539478 9.749358 0.069208 1.163370 0.327015 1.490422
32 0.000042 0.089166 0.538513 9.758339 0.068781 2.363703 0.328953 2.692696

Table 5: Average time in seconds for the operations in our protocol, standardized to the same number of samples across
different datasets and varying forest sizes m of F . Note that the BlindRead operation includes the packing of 24 leaves
with the PFKS operation and that Majority operations is for the whole forest F .
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